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Chapter 15
Mining Matrix Data with Bregman Matrix
Divergences for Portfolio Selection

Richard Nock, Brice Magdalou, Eric Briys and Frank Nielsen

15.1 Introduction0

If only we always knew ahead of time…. The dream of any stock portfolio manager1

is to allocate stocks in his portfolio in hindsight so as to always reach maximum2

wealth. With hindsight, over a given time period, the best strategy is to invest into3

the best performing stock over that period. However, even this appealing strategy is4

not without regret. Reallocating everyday to the best stock in hindsight (that is with5

a perfect sense for ups and downs timing) notwithstanding, Cover has shown that a6

Constant Rebalancing Portfolio (CRP) strategy can deliver superior results [10].7

These superior portfolios have been named Universal Portfolios (UP). In other8

words, if one follows Cover’s advice, a non anticipating portfolio allocation per-9

forms (asymptotically) as well as the best constant rebalancing portfolio allocation10

determined in hindsight. This UP allocation is however not costless as it replicates11

the payoff, if it existed, of an exotic option, namely a hindsight allocation option.12

Buying this option, if it were traded, would enable a fund manager to behave as if13

he always knew everything in hindsight.14

Finding useful portfolio allocations, like the CRP allocation, is not however always15

related to the desire to outperform some pre-agreed benchmark. As Markowitz has16

shown, investors know that they cannot achieve stock returns greater than the risk-17

free rate without having to carry some risk [17]. Markowitz designed a decision18

criterion which, taking both risk and return into account, enables any investor to19

compute the weights of each individual stock in his preferred portfolio. The investor20

is assumed to like return but to dislike risk: this is the much celebrated mean-variance21
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374 R. Nock et al.

approach to portfolio selection. More specifically, the investor computes the set of22

efficient portfolios such that the variance of portfolio returns is minimized for a23

given expected return objective and such that the expected return of the portfolio is24

maximized for a given variance level. Once, the efficient set is computed, the investor25

picks his optimal portfolio, namely, that which maximizes his expected utility. This26

choice process can be simplified if one considers an investor with an exponential27

utility function and a Gaussian distribution of stock returns. In that case, the optimal28

portfolio is that which maximizes the spread between the expected return and half29

the product of variance and the Arrow–Pratt index of absolute risk aversion [23].30

Everything goes as if the expected returns were penalized by a quantity that depends31

both on risk and risk aversion. Although the mean-variance approach has nurtured a32

rich literature on asset pricing, its main defects are well-known [6, 8]. In particular,33

it works well in a setting where one can safely assume that returns are governed by a34

Gaussian distribution. This is a serious limitation that is not supported by empirical35

data on stock returns.36

In the following, we relax this assumption and consider the much broader set of37

exponential families of distributions. Our first contribution is to show that the mean-38

variance framework is generalized in this setting by a mean-divergence framework,39

in which the divergence is a Bregman matrix divergence [7], a class of distortions40

which generalizes Bregman divergences, that are familiar to machine learning works41

([11, 12, 15], and many others). This setting, which is more general than another one42

studied in the context of finance by the authors with plain Bregman divergences [20],43

offers a new and general setting (i) to analyze market events and investors’ behaviors,44

as well as a (ii) to design, analyze and test learning algorithms to track efficient45

portfolios. The divergences we consider are general Bregman matrix divergences46

that draw upon works in quantum physics [21], as well as a new, even broader class47

of Bregman matrix divergences whose generator is a combination of functions. This48

latter class includes as important special case divergences that we call Bregman–49

Schatten p-divergences, that generalize previous attempts to upgrade p-norms vector50

divergences to matrices [13]. We analyze risk premia in this general setting. A most51

interesting finding about the generalization is the fact that the dual affine coordinate52

systems that stem from the Bregman divergences [2] are those of the allocations and53

returns (or wealth). Hence, the general “shape” of the premium implicitly establishes54

a tight bond between these two key components of the (investor, market) pair. Another55

finding is a natural market allocation which pops up in our generalized premium56

(but simplifies in the mean-variance approach), and defines the optimal but unknown57

market investment. In the general case, the risk premium thus depends on more58

than two parameters (the risk aversion parameter and a variance-covariance matrix):59

it depends on a (convex) premium generator, the investor’s allocation, the investor’s60

risk aversion and the natural market allocation. The matrix standpoint on the risk61

premium reveals the roles of the two main components of allocation matrices: the62

spectral allocations, i.e. the diagonal matrix in the diagonalization of the allocation63

matrices, and their transition matrices that play as interaction factors between stocks.64

Recent papers have directly cast learning in the original mean-variance model,65

in an on-line learning setting: the objective is to learn and track portfolios exhibiting66
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15 Mining Matrix Data with Bregman Matrix Divergences 375

bounded risk premia over a sequence of market iterations [14, 26]. The setting of67

these works represents the most direct lineage to our second contribution: the design68

and analysis, in our mean-divergence model, of an on-line learning algorithm to track69

shifting portfolios of bounded risk premia, which relies upon our Bregman–Schatten70

p-divergences. Our algorithm is inspired by the popular p-norm algorithms [15].71

Given reals r, � > 0, the algorithm updates symmetric positive definite (SPD) allo-72

cations matrices whose r -norm is bounded above by �. The analysis of the algorithm73

exploits tools from matrix perturbation theory and new properties of Bregman matrix74

divergences that may be of independent interest. We then provide experiments and75

comparisons of this algorithm over a period of twelve years of S&P 500 stocks,76

displaying the ability of the algorithm to track efficient portfolios, and the capacity77

of the mean-divergence model to spot important events at the market scale, events78

that would be comparatively dampened in the mean-variance model. Finally, we79

drill down into a theoretical analysis of our premia, first including a qualitative and80

quantitative comparison of the matrix divergences we use to others that have been81

proposed elsewhere [12, 13, 16], and then analyzing the interactions of the two key82

components of the risk premium: the investor’s and the natural market allocations.83

The remaining of the paper is organized as follows: Sect. 15.2 presents Breg-84

man matrix divergences and some of their useful properties; Sect. 15.3 presents our85

generalization of the mean-variance model; Sect. 15.4 analyzes our on-line learning86

algorithm in our mean-divergence model; Sect. 15.5 presents some experiments; the87

two last sections respectively discuss further our Bregman matrix divergences with88

respect to other matrix divergences introduced elsewhere, discuss further the mean-89

divergence model, and then conclude the paper with avenues for future research.90

15.2 Bregman Matrix Divergences91

We begin by some definitions. Following [25], capitalized bold letters like M denote92

matrices, and italicized bold letters like v denote vectors. Blackboard notations like93

S denote subsets of (tuples of, matrices of) reals, and |S| their cardinal. Calligraphic94

letters like A are reserved for algorithms. To make clear notations that rely on eco-95

nomic concepts, we shall use small capitals for them: for example, utility functions96

are denoted u. The following particular matrices are defined: I, the identity matrix; Z,97

the all-zero matrix. An allocation matrix A is SPD; a density matrix is an alloca-98

tion matrix of unit trace. Unless otherwise explicitly stated in this section and the99

following ones (Sects. 15.3 and 15.4), matrices are symmetric.100

We briefly summarize the extension of Bregman divergences to matrix divergences
by using the diagonalization of linear operators [16, 21, 25]. Let ψ be some strictly
convex differentiable function whose domain is dom(ψ) ⊆ R. For any symmetric
matrix N ∈ R

d×d whose spectrum satisfies spec (N) ⊆ dom(ψ), we let

ψ(N) .= Tr (Ψ (N)) , Ψ (N) .=
∑

k≥0

tψ,kNk, (15.1)
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15 Mining Matrix Data with Bregman Matrix Divergences 377

where tψ,k are the coefficients of a Taylor expansion of ψ, and Tr (.) denotes the
trace. A (Bregman) matrix divergence with generator ψ is simply defined as:

Dψ(L‖N) .= ψ(L)− ψ(N)− Tr
(
(L− N)∇�ψ (N)

)
, (15.2)

where ∇ψ(N) is defined using a Taylor expansion of∂ψ/∂x , in the same way as Ψ (N)
does for ψ in (15.1). We have chosen to provide the definition for the matrix diver-
gence without removing the transpose when N
is symmetric, because it shall be discussed in a general case in Sect. 15.6. Table 15.1
presents some examples of matrix divergences. An interesting and non-trivial exten-
sion of matrix divergences, which has not been proposed so far, relies in the functional
composition of generators. We define it as follows. For some real-valued functions
φ and ψ with φ ◦ψ strictly convex and differentiable, and matrix N, the generator of
the divergence is:

φ ◦ ψ(N) .= φ(ψ(N)).

Remark that φ is computed over the reals. An example of such divergences is of
particular relevance: Bregman–Schatten p-divergences, a generalization of the pop-
ular Bregman p-norm divergences [15] to symmetric matrices, as follows. Take
ψp(x)

.= |x |p, for p > 1, and φp(x) = (1/2)x2/p . The generator of Bregman–
Schatten p-divergence is φp ◦ ψp, and it comes:

φp ◦ ψp(N) = 1

2
‖N‖2

p . (15.3)

We recall that the Schatten p-norm of a symmetric matrix N is ‖N‖p
.= Tr (|N|p)1/p,101

with |N| .= P
√

D2P�, and P is the (unitary) transition matrix associated to the (diag-102

onal) eigenvalues matrix D. The following Lemma summarizes the main properties103

of Bregman–Schatten p-divergences, all of which are generalizations of properties104

known for the usual p-norm divergences. Two reals p and q are said to be Hölder105

conjugates iff p, q > 1 and (1/p)+ (1/q) = 1.106

Lemma 1. Let p and q be Hölder conjugates, and denote for short

Ãp
.= ∇φp◦ψp (A). (15.4)

The following properties hold true for Bregman–Schatten p-divergences:107

Ñ p = 1

‖N‖p−2
p

N|N|p−2, (15.5)108

Tr
(

N Ñ p

)
= ‖N‖2

p , (15.6)109

∥
∥
∥Ñq

∥
∥
∥

p
= ‖N‖q , (15.7)110
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Dφq◦ψq (L‖N) = Dφp◦ψp (Ñq‖L̃q). (15.8)111

112

Proof sketch: (15.5–15.7) are immediate. To prove (15.8), we prove a relationship
of independent interest, namely that φp ◦ψp and φq ◦ψq are Legendre dual of each
other. For any p and q Hölder conjugates, we prove that we have:

˜
(L̃q)p = L. (15.9)

First, (15.5) brings:
˜
(L̃q)p =

1
∥
∥
∥L̃q

∥
∥
∥

p−2

p

L̃q |L̃q |p−2. (15.10)

We consider separately the terms in (15.10). First, it comes:113

∥
∥
∥L̃q

∥
∥
∥

p−2

p
=
∥
∥
∥
∥
∥

1

‖L‖q−2
q

L|L|q−2

∥
∥
∥
∥
∥

p−2

p

= 1

‖L‖(p−2)(q−2)
q

Tr
(
|L|(q−1)p

) p−2
p

114

= 1

‖L‖(p−2)(q−2)
q

‖L‖2−q
q = 1

‖L‖(p−1)(q−2)
q

. (15.11)115

Then,116

L̃q |L̃q |p−2 = 1

‖L‖q−2
q

L|L|q−2

∣
∣
∣
∣
∣

1

‖L‖q−2
q

L|L|q−2

∣
∣
∣
∣
∣

p−2

= 1

‖L‖(q−2)(p−1)
q

L|L|qp−q−p
117

= 1

‖L‖(q−2)(p−1)
q

L, (15.12)118

as indeed qp − q − p = 0. Plugging (15.11) and (15.12) into (15.10), one obtains119

(15.9), as claimed. Then, (15.8) follows from (15.16).120

We discuss in Sect. 15.6 a previous definition due to [13] of p-norm matrix diver-121

gences, which represents a particular case of Bregman–Schatten p-divergences. The122

following Lemma, whose proof is omitted to save space, shall be helpful to simplify123

our proofs, as it avoids the use of rank-4 tensors to bound matrix divergences.124

Lemma 2. Suppose thatφ is concave, andφ◦ψ is strictly convex differentiable. Then
∀L, N two symmetric matrices, there exists Uα

.= αL + (1− α)N with α ∈ [0, 1],
such that:

Dφ◦ψ(L‖N) ≤ ∇φ ◦ ψ(N)
2

Tr

(

(L − N)2
∂2

∂x2ψ(x)

∣
∣
∣
∣
x=Uα

)

. (15.13)
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Proof We first make a Taylor–Lagrange expansion on ψ; there exists α ∈ [0, 1] and
matrix Uα

.= αL+ (1− α)N for which:

ψ(L) = ψ(N)+ Tr
(
(L− N)∇ψ(N)

)+ 1

2
Tr

(

(L− N)2
∂2

∂x2ψ(x)

∣
∣
∣
∣
x=Uα

)

,

which implies:

φ ◦ ψ(L)

= φ
(

ψ(N)+ Tr
(
(L− N)∇ψ(N)

)+ 1

2
Tr

(

(L− N)2
∂2

∂x2ψ(x)

∣
∣
∣
∣
x=Uα

))

.

(15.14)

On the other hand, φ is concave, and so φ(b) ≤ φ(a) + ∂
∂x φ(x)

∣
∣
∣
x=a

(b − a). This

implies the following upperbound for the right-hand side of (15.14):

φ

(

ψ(N)+ Tr
(
(L− N)∇ψ(N)

)+ Tr

(

(L− N)2
∂2

∂x2ψ(x)

∣
∣
∣
∣
x=Uα

))

≤ φ ◦ ψ(N)

+∇φ ◦ ψ(N)×
{

Tr
(
(L− N)∇ψ(N)

)+ 1

2
Tr

(

(L− N)2
∂2

∂x2ψ(x)

∣
∣
∣
∣
x=Uα

)}

= φ ◦ ψ(N)+ Tr
(
(L− N)∇φ ◦ ψ(N)∇ψ(N)

)

+ 1

2
Tr

(

(L− N)2∇φ ◦ ψ(N) ∂2

∂x2ψ(x)

∣
∣
∣
∣
x=Uα

)

= φ ◦ ψ(N)+ Tr
(
(L− N)∇φ◦ψ(N)

)

+ ∇φ ◦ ψ(N)
2

Tr

(

(L− N)2
∂2

∂x2ψ(x)

∣
∣
∣
∣
x=Uα

)

.

Putting the resulting inequality into (15.14) yields:

φ ◦ ψ(L) ≤ φ ◦ ψ(N)+ Tr
(
(L− N)∇φ◦ψ(N)

)

+ ∇φ ◦ ψ(N)
2

Tr

(

(L− N)2
∂2

∂x2ψ(x)

∣
∣
∣
∣
x=Uα

)

.

Rearranging and introducing Bregman matrix divergences, we obtain (15.13),125

as claimed. �
126

299664_1_En_15_Chapter � TYPESET DISK LE � CP Disp.:29/5/2012 Pages: 402 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

380 R. Nock et al.

15.3 Mean-Sivergence: A Generalization of Markowitz’127

Mean-Variance Model128

Our generalization is in fact two-way as it relaxes both the normal assumption and
the vector-based allocations of the original model. It is encapsulated by regular
exponential families [4] with matrix supports, as follows. We first define the matrix
Legendre dual of strictly convex differentiable ψ as:

ψ�(Ñ) .= sup
spec(N)⊂dom(ψ)

{Tr
(

NÑ�
)
− ψ(N)}. (15.15)

We can easily find the exact expression for ψ�. Indeed, Ñ = ∇ψ(N), and thus

ψ�(Ñ) = Tr
(
∇−1
ψ (Ñ)Ñ�

)
− ψ(∇−1

ψ (Ñ)), out of which it comes:

Dψ(L‖N) = ψ(L)+ ψ�(Ñ)− Tr
(

LÑ�
)
= Dψ� (∇ψ(N)‖∇ψ(L)). (15.16)

Let W model a stochastic behavior of the market such that, given A an allocation
matrix, the quantity

ωF .= Tr
(

AW�) (15.17)

models the wealth (or reward) retrieved from the Market. In what follows, W models129

market returns, and satisfies spec (W) ⊂ [−1,+∞). The stochastic behavior of the130

market comes from the choice of W according to regular exponential families [4]131

using matrix divergences, as follows:132

pψ(W;Θ) .= exp
(

Tr
(
ΘW�)− ψ(Θ)

)
b(W) (15.18)133

= exp
(−Dψ� (W‖∇ψ(Θ))+ ψ�(W)

)
b(W), (15.19)134

where Θ defines the natural matrix parameter of the family and (15.19) follows from
(15.16) [4]. Up to a normalization factor which does not depend on Θ , this density
is in fact proportional to a ratio of two determinants:

pψ(W;Θ) ∝ det exp(WΘ�)
det exp(Ψ (Θ))

. (15.20)

It is not hard to see that the following holds true for pψ defined as in (15.19):

∇ψ(Θ) = EW∼pψ [W], (15.21)

with E.[.] the expectation. Equation (15.21) establishes the connection between
natural parameters and expectation parameters for the exponential families we
consider [2]. It also allows to make a useful parallel between Tr

(
ΘW�) in the
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general setting (15.18) andωF in our application (15.17): while the expectation para-
meters model the average market returns, the natural parameters turn out to model
market specific allocations. This justifies the name natural market allocation for Θ ,
which may be viewed as the image by ∇−1

ψ of the market’s expected returns. Taking
as allocation matrix this natural market allocation, (15.18) represents a density of
wealth associated to the support of market returns W, as we have indeed:

pψ(W;Θ) ∝ exp(ωF ). (15.22)

(15.22) us that the density of wealth is maximized for investments corresponding135

to the natural market allocation Θ , as the (unique) mode of exponential families136

occurs at their expectation parameters; furthermore, it happens that the natural mar-137

ket allocation is optimal from the information-theoretic standpoint (follows from138

Proposition 1 in [3], and (15.16) above).139

Let us switch from the standpoint of the market to that of an investor. The famed
St. Petersburg paradox tells us that this investor typically does not obey to the maxi-
mization of the expected value of reward, EW∼pψ [ωF ] [9]. In other words, as opposed
to what (15.22) suggests, the investor would not follow maximum likelihood to fit
his/her allocation. A more convenient framework, axiomatized by [18], considers
that the investor maximizes instead the expected utility of reward, which boils down
to maximizing in our case EW∼pψ [u(ωF )], where an utility function u models the
investor’s preferences in this framework. One usually requires that the first derivative
of u be positive (non-satiation), and its second derivative be negative (risk-aversion).
It can be shown that the expected utility equals the utility of the expected reward
minus a real risk premium pψ(A;Θ):

EW∼pψ

[
u(ωF )

]
= u(EW∼pψ [ωF ] − pψ(A;Θ)

︸ ︷︷ ︸
cψ(A;Θ)

). (15.23)

It can further be shown that if the investor is risk-averse, the risk premium is strictly140

positive [9]. In this case, looking at the right-hand side of (15.23), we see that the141

risk premium acts like a penalty to the utility of the expected wealth. It represents a142

shadow cost to risk bearing in the context of market allocation, or, equivalently, the143

willingness of the investor to insure his/her portfolios.144

There is one more remarkable thing about (15.23). While its left-hand side aver-145

ages utilities over a potentially infinite number of markets, the right-hand side con-146

siders the utility of a single case which thus corresponds to a sure wealth equivalent147

to the left-hand side’s numerous cases: it is called the certainty equivalent of the148

expected utility, cψ(A;Θ). What we have to do is derive, in the context of exponen-149

tial families, the expressions of u, pψ and cψ in (15.23).150

First, we adopt the usual landmarks that yield u [9, 23]. Consider the following151

Taylor approximations of the utility function around reward’s expectation:152
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u(ωF ) ≈ u(EW∼pψ [ωF ])153

+(ωF − EW∼pψ [ωF ])× ∂

∂x
u(x)

∣
∣
∣
∣
x=EW∼pψ [ωF ]

154

+ (ω
F − EW∼pψ [ωF ])2

2
× ∂2

∂x2 u(x)

∣
∣
∣
∣
x=EW∼pψ [ωF ]

,155

(15.24)156

u(EW∼pψ [ωF ] − pψ(A;Θ)) ≈ u(EW∼pψ [ωF ])157

−pψ(A;Θ)× ∂

∂x
u(x)

∣
∣
∣
∣
x=EW∼pψ [ωF ]

. (15.25)158

If we take expectations of (15.24) and (15.25), simplify taking into account the159

fact that EW∼pψ [ωF − EW∼pψ [ωF ]] = 0, and match the resulting expressions using160

(15.23), we obtain the following approximate expression for the risk premium:161

pψ(A;Θ) ≈ 1

2
VarW∼pψ [ωF ]162

×
⎧
⎨

⎩
− ∂2

∂x2 u(x)

∣
∣
∣
∣
x=EW∼pψ [ωF ]

(
∂

∂x
u(x)

∣
∣
∣
∣
x=EW∼pψ [ωF ]

)−1
⎫
⎬

⎭

︸ ︷︷ ︸
r(pψ)

163

. (15.26)164

Thus, approximation “in the small” of the risk premium makes it proportional to165

the variance of rewards and function r(pψ), which is just, in the language of risk166

aversion, the Arrow–Pratt measure of absolute risk aversion [9, 23]. This expression167

for the risk premium is obviously not the one we shall use: its purpose is to shed light168

on the measure of absolute risk aversion, and derive the expression of u, as shown169

in the following Lemma.170

Lemma 3. r(pψ) = k, a constant matrix iff one of the following conditions holds
true: {

u(x) = x if k = 0
u(x) = − exp(−ax) for some a ∈ R∗ (otherwise)

. (15.27)

The proof of this Lemma is similar to the ones found in the literature (e.g. [9], Chap. 4).171

The framework of Lemma 3 is that of constant absolute risk aversion (CARA) [9],172

the framework on which we focus now, assuming that the investor is risk-averse.173

This implies k �= 0 and a > 0; this constant a is called the risk-aversion parameter,174

and shall be implicit in some of our notations. We obtain the following expressions175

for cψ and pψ .176
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Fig. 15.1 Risk premia for various choices of generators, plotted as functions of the risk aversion
parameter a > 0 and parameter ε ∈ [0, 1] which modifies the natural market allocation (see text
for the details of the model). Generators are indicated for each premium; see Table 15.1 for the
associated Bregman matrix divergences. Symbol (�) indicates plots with logscale premium

Theorem 1. Assume CARA and pψ defined as in (15.18). Then, the certainty equiv-177

alent and the risk premium associated to the portfolio are respectively:178

cψ(A;Θ) = 1

a
(ψ(Θ)− ψ(Θ − aA)), (15.28)179

pψ(A;Θ) = 1

a
Dψ(Θ − aA‖Θ). (15.29)180

Proof We first focus on the certainty equivalent. We have:181

EW∼pψ [u(ωF )] =
∫

− exp
(

Tr
(

W(Θ − aA)�
)
− ψ(Θ)

)
b(W)dW182

= − exp (ψ(Θ − aA)− ψ(Θ))183

×
∫

exp
(

Tr
(

W(Θ − aA)�
)
− ψ(Θ − aA)

)
b(W)dW

︸ ︷︷ ︸
=1

. (15.30)184
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But we must also have from (15.23) and (15.27): EW∼pψ [u(ωF )] = − exp
(−acψ185

(A;W)). This identity together with (15.30) brings us expression (15.28). Now, for186

the risk premium, (15.23) brings:187

pψ(A;Θ) = EW∼pψ [u(ωF )] − cψ(A;W)188

= Tr
(

A∇�ψ (Θ)
)
− cψ(A;W)189

= 1

a

(
ψ(Θ − aA)− ψ(Θ)+ Tr

(
aA∇�ψ (Θ)

))
190

= 1

a
Dψ(Θ − aA‖Θ), (15.31)191

as claimed, where (15.31) uses the fact that EW∼pψ [u(ωF )] = EW∼pψ [Tr
(
AW�)] =192

Tr
(

A∇�ψ (Θ)
)

from (15.21).193

The following Lemma states among all that Theorem 1 is indeed a generalization194

of the mean-variance approach (proof straightforward).195

Lemma 4. The risk premium satisfies the following limit behaviors:196

lim
a→0

pψ(A;Θ) = 0,197

lim
A→F Z

pψ(A;Θ) = 0,198

where→F denotes the limit in Frobenius norm. Furthermore, when pψ is a multi-
variate Gaussian, the risk premium simplifies to the variance premium of the mean-
variance model:

pψ(A;Θ) = a

2
di ag(A)�Σdi ag(A),

where di ag(.) is the vector of the diagonal entries of the matrix.199

One may use Lemma 4 as a sanity check for the risk premium, as the Lemma
says that the risk premium tends to zero when risk aversion tends to zero, or when
there is no allocation at all. Hereafter, we shall denote our generalized model as
the mean-divergence model. Let us illustrate in a toy example the range of premia
available, fixing the dimension to be d = 1, 000. We let A and Θε be diagonal,
where A denotes the uniform allocation (A = (1/d)I), and Θε depends on real
ε ∈ [0, 1], with:

θi i =
{

1− ε if i = 1,
ε

d−1 otherwise
.

Thus, the natural market allocation shifts in between two extreme cases: the one in200

which the allocation emphasizes a single stock (ε = 0), and the one in which it is uni-201

form on all but one stocks (ε = 1), admitting as intermediary setting the one in which202

the natural market allocation is uniform (ε = (d − 1)/d). Risk premia are compared203
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Fig. 15.2 More examples of risk premia. Conventions follow those of Fig. 15.1

against the mean-variance model’s in which we let Σ = I . The results are presented204

in Figs. 15.1 and 15.2. Notice that the mean-variance premium, which equals a/(2d),205

displays the simplest behavior (a linear plot, see upper-left in Fig. 15.1).206

15.4 On-line Learning in the Mean-Divergence Model207

As previously studied by [14, 26] in the mean-variance model, our objective is now208

to track “efficient” portfolios at the market level, where a portfolio is all the more effi-209

cient as its associated risk premium (15.28) is reduced. Let us denote these portfolios210

reference portfolios, and the sequence of their allocation matrices as: O0,O1, . . ..211

The natural market allocation may also shift over time, and we denote Θ0,Θ1, . . .212

the sequence of natural parameter matrices of the market. Naturally, we could sup-213

pose that Ot = Θ t ,∀t , which would amount to tracking directly the natural market214

allocation, but this setting would be too restrictive because it may be easier to track215

some Ot close to Θ t but having specific properties that Θ t does not have (e.g. spar-216

sity). Finally, we measure risk premia for references with the same risk aversion217

parameter a as for the investor’s.218
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To adopt the same scale for allocation matrices, all shall be supposed to have
r -norm upperbounded by �, for some user-fixed � > 0 and r > 0. Assume for
example r = 1: after division by �, one can think such matrices as representing the
way the investor scatters his/her wealth among the d stocks, leaving part of the wealth
for a riskless investment if the trace is< 1. The algorithm we propose, simply named
A, uses ideas from Amari’s natural gradient [1], to progress towards the minimization
of the risk premium using a geometry induced by Bregman–Schatten p-divergence.
To state this algorithm, we abbreviate the gradient (in A) of the risk premium as:

∇pψ (A;Θ) .= ∇ψ(Θ)−∇ψ(Θ − aA)

(the risk aversion parameter a shall be implicit in the notation). Algorithm A ini-219

tializes the following parameters: allocation matrix A0 = Z, learning parameter220

ηa > 0, Bregman–Schatten parameter q > 2, and renormalization parameters � > 0221

and r > 0; then, it proceeds through iterating what follows, for t = 0, 1, . . . , T − 1:222

• (Premium dependent update) Upon receiving observed returns Wt , compute Θ t

using (15.21), and update portfolio allocation matrix to find the new unnormalized
allocation matrix, Au

t+1:

Au
t+1 ← ∇−1

φq◦ψq
(∇φq◦ψq (At )+ ηa(st I−∇pψ (At ;Θ t )

︸ ︷︷ ︸
Δt

))

= ∇φp◦ψp (∇φq◦ψq (At )+ ηaΔt )), (15.32)

∀t ≥ 0, with st ≥ 0 picked to have Δt positive definite. Lemma 1 implies the223

equality in (15.32).224

• (Normalize) If
∥
∥Au

t+1

∥
∥

r
> � then At+1 ←

(
�/
∥
∥Au

t+1

∥
∥

r

)
Au

t+1, else At+1 ←225

Au
t+1.226

We make the following assumption regarding market evolution: the matrix diver-
gence or the risk premium is convex enough to exceed linear variations up to a small
constant δ > 0 (we let (i) denote this assumption):

∃δ > 0 : ∀t ≥ 0, Dψ(Θ t − aOt‖Θ t − aAt ) ≥ δ + st Tr ((Θ t − aOt )− (Θ t − aAt ))

= δ + ast Tr (At −Ot ) (i).

Let us denote
U

.= {Δt ,∀t} ∪ {
∑

0≤ j<t

Δ j ,∀t > 0}.

This is the set of premium dependent updates, and all its elements are SPD matrices.
We let λ∗ > 0 denote the largest eigenvalue in the elements of U, and ρ∗ ≥ 1 their
largest eigenratio, where the eigenratio of a matrix is the ratio between its largest
and smallest eigenvalues. We let T denote the set of indexes for which we perform

299664_1_En_15_Chapter � TYPESET DISK LE � CP Disp.:29/5/2012 Pages: 402 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15 Mining Matrix Data with Bregman Matrix Divergences 387

renormalization. Finally, we let

ν∗
.= min{1, min

t=1,2,...,T
(�/
∥
∥Au

t

∥
∥

r )} (> 0),

which is 1 iff no renormalization has been performed. The following Theorem states227

that the total risk premium incurred by A basically deviates from that of the shifting228

reference by no more than two penalties: the first depends on the total shift of the229

reference, the second depends on the difference of the Schatten p-norms chosen for230

updating and renormalizing.231

Theorem 2. Pick

0 < ηa <
1

λ∗d
1
2− 1

q (1+ ν−1∗ ρ∗)
q
2−1

√
2δ

a(q − 1)
.

Then, Algorithm A satisfies:

T−1∑

t=0

pψ(At ;Θ t ) ≤
T−1∑

t=0

pψ(Ot ;Θ t )

+ 1

ηa

(

b ‖OT ‖2
r + b2�

T−1∑

t=0

‖Ot+1 −Ot‖r + |T|�2
[

d
|q−r |

qr − 1

]2
)

. (15.33)

Here, b = 1 iff r ≤ q and b = d
r−q
qr otherwise.232

Proof sketch: The proof makes an extensive use of two matrix inequalities that we
state for symmetric matrices (but remain true in more general settings):

‖L‖γ d
1
β− 1

γ ≤ ‖L‖β ≤ ‖L‖γ , ∀L ∈ R
d×d , ∀β > γ > 0 ; (15.34)

Tr (LN) ≤ ‖L‖β ‖N‖γ , ∀L,N ∈ R
d×d ,∀β, γHölder conjugates. (15.35)

The former is a simple generalization of q-norm vector inequalities; the second is
Hölder’s matrix inequality. Following a general well-oiled technique [15], the proof
consists in bounding a measure of progress to the shifting reference,

δt
.= Dφq◦ψq (Ot‖At )− Dφq◦ψq (Ot+1‖At+1). (15.36)

To take into consideration the possible renormalization, we split the progress into233

two parts, δt,1, δt,2, as follows:234
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δt = Dφq◦ψq (Ot‖At )− Dφq◦ψq (Ot‖Au
t+1)

︸ ︷︷ ︸
δt,1

235

+ Dφq◦ψq (Ot‖Au
t+1)− Dφq◦ψq (Ot+1‖At+1)

︸ ︷︷ ︸
δt,2

. (15.37)236

We now bound separately the two parts, starting with δt,1. We have:237

δt,1 = ηaTr ((Ot − At )Δt )− Dφq◦ψq (At‖Au
t+1)238

= ηa

a
Tr
(
((Θ t − aAt )− (Θ t − aOt ))

(∇ψ(Θ t − aAt )−∇ψ(Θ t )
))

︸ ︷︷ ︸
τ

239

+ηast Tr (Ot − At )− Dφq◦ψq (At‖Au
t+1). (15.38)240

The following Bregman triangle identity [19] holds true:

τ = Dψ(Θ t−aOt‖Θ t−aAt )+Dψ(Θ t−aAt‖Θ t )−Dψ(Θ t−aOt‖Θ t ). (15.39)

Plugging (15.39) in (15.38) and using assumption (i) yields:241

δt,1 ≥ ηa

a

{
Dψ(Θ t − aAt‖Θ t )− Dψ(Θ t − aOt‖Θ t )

}
242

−Dφq◦ψq (At‖Au
t+1)+

ηaδ

a
. (15.40)243

Lemma 5. The following bound holds for the divergence between successive
updates:

Dφq◦ψq (At‖Au
t+1) ≤

(q − 1)η2
ad1− 2

q
(
1+ ν−1∗ ρ∗

)q−2
λ2∗

2
. (15.41)

Proof Plugging L .= At and N .= Au
t+1 in Lemma 1 (ii), and using (15.32), we get:

Dφq◦ψq (At‖Au
t+1) = Dφp◦ψp (∇φq◦ψq (At )+ ηaΔt

︸ ︷︷ ︸
L

‖∇φq◦ψq (At )
︸ ︷︷ ︸

N

) (15.42)

We now pick L and N as in (15.42), and use them in (15.13) (Lemma 2), along with244

the fact that q > 2 which ensures that φq is concave. There comes that there exists245

some α ∈ [0, 1] such that:246
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(Dφq◦ψq (∇φq◦ψq (At )+ ηaΔt )||∇φq◦ψq (At ))247

≤η
2
a

2

∂

∂x
φq(x)

∣
∣
∣
∣
x=ψq

(
∇φq ◦ψq (At )

) Tr

(

Δ2
t
∂2

∂x2ψq(x)

∣
∣
∣
∣
x=Uα

)

248

= (q − 1)η2
a

2

∥
∥∇φq◦ψq (At )

∥
∥2−q

q
Tr
(
Δ2

t |Uα|q−2
)
, (15.43)249

with Uα
.= ∇φq◦ψq (At ) + αηaΔt . We now use (15.35) with β = q/(q − 2) and250

γ = q/2, and we obtain Tr
(
Δ2

t |Uα|q−2) ≤ ‖Uα‖q−2
q ‖Δt‖2

q , which, using (15.43),251

yields the following bound on the divergence of Ãt+1 with respect to At :252

Dφq◦ψq (At‖Ãt+1) ≤ (q − 1)η2
a

2

∥
∥∇φq◦ψq (At )

∥
∥2−q

q
‖Uα‖q−2

q ‖Δt‖2
q253

= (q − 1)η2
a

2
× ‖Uα‖q−2

q ‖Δt‖2
q

‖At‖−(q−2)2
q

∥
∥
∥Aq−1

t

∥
∥
∥

q−2

q

. (15.44)254

We now work on ‖Uα‖q . Let υ denote an eigenvalue of Uα, and ∇φq◦ψq (At ) =255

PDP� the diagonalization of ∇φq◦ψq (At ). Bauer-Fike Theorem tells us that there256

exists an eigenvalue � of ∇φq◦ψq (At ) such that:257

|υ − �| ≤ αηa |�| ‖P‖F

∥
∥
∥P�

∥
∥
∥

F

∥
∥
∥∇φq◦ψq (At )

−1 Δt

∥
∥
∥

F
258

= αηa |�|
∥
∥
∥∇φq◦ψq (At )

−1 Δt

∥
∥
∥

F
, (15.45)259

because P is unitary. Denoting {υi }di=1 the (possibly multi-)set of non-negative eigen-260

values of Uα, and {�i }di=1 that of ∇φq◦ψq (At ), there comes from (15.45) that there261

exists f : {1, 2, . . . , d} → {1, 2, . . . , d} such that:262

‖Uα‖q
.=
(

d∑

i=1

υ
q
i

) 1
q

≤
(

1+ αηa

∥
∥
∥∇φq◦ψq (At )

−1 Δt

∥
∥
∥

F

)
(

d∑

i=1

�
q
f (i)

) 1
q

263

≤ d
1
q

(
1+ ηa

∥
∥
∥∇φq◦ψq (At )

−1 Δt

∥
∥
∥

F

) ∥
∥∇φq◦ψq (At )

∥
∥∞264

= d
1
q

(
1+ ηa

∥
∥
∥∇φq◦ψq (At )

−1 Δt

∥
∥
∥

F

) ‖At‖q−1∞
‖At‖q−2

q

. (15.46)265

Putting (15.46) into (15.44) yields:266
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Dφq◦ψq (At‖Ãt+1) ≤
(q − 1)η2

ad1− 2
q

(
1+ ηa

∥
∥∇φq◦ψq (At )

−1 Δt
∥
∥

F

)q−2 ‖Δt‖2
q

2
267

×
⎛

⎜
⎝
‖At‖q−1∞∥
∥
∥Aq−1

t

∥
∥
∥

q

⎞

⎟
⎠

q−2

. (15.47)268

We now refine this bound in three steps. First, since ‖At‖q−1∞ ≤
∥
∥
∥Aq−1

t

∥
∥
∥

q
, the factor269

after the times is≤ 1. Second, let us denote ν∗ < νt ≤ 1 the multiplicative factor by270

which we renormalize Ãt+1. Remarking that ∇φq◦ψq (xL) = |x |∇φq◦ψq (L) ,∀x ∈271

R∗272

and using Lemma 1, we obtain:273

∇φq◦ψq (At ) = ∇φq◦ψq

(
νt−1∇φp◦ψp (∇φq◦ψq (At−1)+ ηaΔt−1)

)
274

= νt−1∇φq◦ψq (At−1)+ ηaνtΔt−1275

=
⎛

⎝
t−1∏

j=0

ν j

⎞

⎠∇φq◦ψq (A0)+ ηa

t−1∑

j=0

⎛

⎝
t−1∏

k= j

νk

⎞

⎠Δ j276

� ηaνt−1Δt−1 � Z,277

where N � M means N − M is positive semi-definite. The rightmost inequality278

follows from the fact that the updates preserve the symmetric positive definiteness of279

At+1. We get ∇φq◦ψq (At )
−1 � η−1

a π−1
t−1Δ

−1
t−1, which, from Lemma 2 in [25], yields280

ηa
∥
∥∇φq◦ψq (At )

−1 Δt
∥
∥

F
≤ ν−1

t−1

∥
∥
∥Δ−1

t−1Δt

∥
∥
∥

F
≤ ν−1

t−1ρ∗ ≤ ν−1∗ ρ∗. Third and last,281

‖Δt‖q ≤ λ∗. Plugging these three refinements in (15.47) yields the statement of the282

Lemma.283

Armed with the statement of Lemma 5 and the upperbound on ηa , we can refine
(15.40) and obtain our lowerbound on δt,1 as:

δt,1 ≥ ηa

a

{
Dψ(Θ t − aAt‖Θ t )− Dψ(Θ t − aOt‖Θ t )

}
. (15.48)

We now work on δt,2. We distinguish two cases:284

Case 1
∥
∥Au

t+1

∥
∥

r
≤ � (we do not perform renormalization). In this case, At+1 =

Au
t+1. Using (15.35) with β = q, γ = q/(q − 1) which brings

Tr
(
L∇φq◦ψq (At+1)

) ≤ ‖L‖q ‖At+1‖q ,

we easily obtain the lowerbound:
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Dφq◦ψq (Ot‖Au
t+1)− Dφq◦ψq (Ot+1‖At+1)

≥1

2
‖Ot‖2

q −
1

2
‖Ot+1‖2

q − ‖Ot+1 −Ot‖q ‖At+1‖q . (15.49)

Case 2
∥
∥Au

t+1

∥
∥

r
> � (we perform renormalization). Because the reference matrix

satisfies ‖Ot‖r ≤ �, renormalization implies ‖Ot‖r ≤ ‖At+1‖r . This inequality,
together with (15.34), brings:

‖Ot‖q ≤ ‖At+1‖q d
|q−r |

qr .

Using the shorthands:285

ut+1
.= �
∥
∥Au

t+1

∥
∥

r

(∈ (0, 1)),286

v
.= 2d

|q−r |
qr (≥ 2),287

g(x, y)
.= (1− x)(y − x)

x2 ,288

and one more application of (15.35) as in Case 1, we obtain:289

Dφq◦ψq (Ot‖Au
t+1)− Dφq◦ψq (Ot+1‖At+1)290

≥ 1

2
‖Ot‖2

q −
1

2
‖Ot+1‖2

q291

+v − 1

2
g

(

ut+1,
1

v − 1

)

‖At+1‖2
q − ‖Ot+1 −Ot‖q ‖At+1‖q . (15.50)292

We are now in a position to bring (15.49) and (15.50) altogether: summing for293

t = 0, 1, . . . , T − 1 (15.37) using (15.48) and (15.50), we get:294

Dφq◦ψq (O0‖A0)− Dφq◦ψq (OT ‖AT ) =
T−1∑

t=0

δt295

≥ ηa

T−1∑

t=0

pψ(At ;Θ t )− ηa

T−1∑

t=0

pψ(Ot ;Θ t )296

+1

2
‖O0‖2

q −
1

2
‖OT ‖2

q −
T−1∑

t=0

‖Ot+1 −Ot‖q ‖At+1‖q297

+v − 1

2

∑

t∈T
g

(

ut ,
1

v − 1

)

‖At‖2
q , (15.51)298

where we recall that T contains the indexes of renormalization updates. Because
g(x, y) ≥ −(1− y)2/(4y), the following lowerbound holds:
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g

(

ut ,
1

v − 1

)

≥ −v − 2

4
,∀t ∈ T.

There remains to plug this bound into (15.51) and simplify a bit further to obtain the299

statement of the Theorem. �
300

The bound in Theorem 33 shows that the sum of premia of algorithm A is no larger301

than the sum of premia of any sequence of shifting references plus two penalties:302

the first depends on the sequence of references; the second (the rightmost term in303

(15.33)) is structural as it is zero when q = r . Both penalties are proportional to
√

a:304

they are thus sublinear on the risk aversion parameter. This is interesting, as one305

can show that the risk premium is always superlinear in a, with the exception of306

Markowitz’ mean-variance model for which it is linear (see Fig. 15.1). Hence, the307

effects of risk aversion in the penalty are much smaller than in the premia. Finally,308

we can note that if small premia are achieved by reference allocations with sparse309

eigenspectra and that do not shift too much over periods, then the premia of A shall310

be small as well.311

15.5 Experiments on Learning in the Mean-Divergence Model312

We have made a toy experiment of A over the d = 324 stocks which belonged to the313

S&P 500 over the periods ranging from 01/08/1998 to 11/12/2009 (1 period = 1 week,314

T = 618). Our objective in performing these few experiments is not to show whether315

A competes with famed experimental approaches like [5]. Clearly, we have not tuned316

the parameters of A to obtain the best-looking results in Fig. 15.3. Our objective is317

rather to display on a real market and over a sufficiently large number of iterations318

(i) whether the mean-divergence model can be useful to spot insightful market events,319

and (ii) wether simple on-line learning approaches, grounded on a solid theory, can320

effectively track reduced risk portfolios, obtain reasonably large certainty equiva-321

lents, and thus suggest that the mean-divergence model may be a valuable starting322

point for much more sophisticated approaches [5]. Figure 15.3 displays comparisons323

between A and the Uniform Cost Rebalanced Portfolio (UCRP), which consists324

in equally scattering wealth among stocks. The Figure also displays the Kullback–325

Leibler divergence between two successive portfolios for A (this would be zero for326

UCRP): the higher the divergence, the higher the differences between successive327

portfolios selected by A. We see from the pictures that A manages significant varia-328

tions of its portfolio through iterations (divergence almost always> 0.05), yet it does329

turn like a weather vane through market periods (divergence almost always < 0.3).330

The fact that market accidents make the divergence peak, like during the subprime331

crisis (T > 500), indicate that the algorithm significantly reallocates its portfolio332

during such events. As shown in the Figure, this is achieved with certain success333

compared to the UCRP . Figure 15.4 displays risk premia for A when shifting from334

Markowitz’ premium to that induced by the logdet divergence, a premium which dis-335

plays by far the steepest variations among premia in Figs. 15.1 and 15.2. Figure 15.4336
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15 Mining Matrix Data with Bregman Matrix Divergences 393

Fig. 15.3 Up Comparison
of cumulated returns minus
premia (certainty equivalents)
for A (bold lines) versus
the Uniform Cost Rebal-
anced Portfolio (UCRP , thin
lines). Parameters for the
algorithms are: a = 100,
r = � = 1, q = 2.1, η = 100,
premium divergence =
Mahalanobis. Down
Kullback–Leibler divergence
between two successive port-
folios for A
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displays the relevance of the generalized mean-divergence model. Changing the pre-337

mium generator may indeed yield to dramatic peaks of premia that can alert the338

investor on significant events at the market scale, like in Fig. 15.4, for which the339

tallest peaks appear during the subprime crisis.340
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Fig. 15.4 Premia for A, with
a = 100, r = � = 1, q = 4,
η = 100, premium divergence
= logdet (Table 15.1). See text
for details
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15.6 Discussion341

In this section, our objective is twofold. first, we drill down into the properties of our342

divergences (15.2), and compare them to the properties of other matrix divergences343

based on Bregman divergences published elsewhere. Second, we exploit these prop-344

erties to refine our analysis on the risk premium of our mean-divergence model.345

Thus, for our first goal, the matrix arguments of the divergences are not assumed to346

be symmetric anymore.347

Reference [13] have previously defined a particular case of matrix-based diver-348

gence, which corresponds to computing the usual p-norm vector divergence between349

spec (L) and spec (N). It is not hard to check that this corresponds to a particular350

case of Bregman–Schatten p-divergences in the case where one assumes that L and351

N share the same transition matrix. The qualitative gap between the definitions is352

significant: in the case of a general Bregman matrix divergences, such an assumption353

would make the divergence separable, that is, summing coordinate-wise divergences354

[11]. This is what the following Theorem shows. We adapt notation (15.4) to vectors355

and define ũ the vector with coordinates ∇ψ(ui ). We also make use of the Hadamard356

product · previously used in Table 15.1.357

Theorem 3. Assume diagonalizable squared matrices L and N, with their diago-358

nalizations respectively denoted:359

L = PL DL P−1
L
,360

N = PN DN P−1
N
.361
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Denote the (non necessarily distinct) eigenvalues of L (resp. N) as: λ1,λ2, . . . ,λd362

(resp. ν1, ν2, . . . , νd ), and the corresponding eigenvectors as: l1, l2, . . . , ld (resp.363

n1, n2, . . . , nd). Finally, let λ
.= di ag(DL), ν

.= di ag(DN) and364

ΠX,Y
.= P�

X
PY ,∀X,Y ∈ {L, N},365

HX,Y
.= Π−1

X,Y
·Π�

X,Y
.366

Then any Bregman matrix divergence can be written as:

Dψ(L||N) =
d∑

i=1

Dψ(λi ||νi )+ λ�(I − HN,L)ν̃ + ν�(HN,N − I)ν̃. (15.52)

If, in addition, N is symmetric, (15.52) becomes:

Dψ(L||N) =
d∑

i=1

Dψ(λi ||νi )+ λ�(I − HN,L)ν̃, (15.53)

If, in addition, L is symmetric, (15.53) holds for some doubly-stochastic HN,L . If, in
addition, L and N share the same transition matrices (PL = PN ), (15.53) becomes:

Dψ(L||N) =
d∑

i=1

Dψ(λi ||νi ). (15.54)

Proof Calling to (15.1) and using the general definition of (15.2), we get:

Dψ(L||N) = Tr

⎛

⎝
∑

k≥0

tψ,kLk

⎞

⎠− Tr

⎛

⎝
∑

k≥0

tψ,kNk

⎞

⎠− Tr

⎛

⎝
∑

k≥0

t∇ψ,k(L− N)(N�)k
⎞

⎠ .

Introducing the diagonalization, we obtain:367

Dψ(L||N) = Tr

⎛

⎝PL

⎛

⎝
∑

k≥0

tψ,kDk
L

⎞

⎠P−1
L

⎞

⎠− Tr

⎛

⎝PN

⎛

⎝
∑

k≥0

tψ,kDk
N

⎞

⎠P−1
N

⎞

⎠368

−Tr

⎛

⎝L
∑

k≥0

t∇ψ,k(N�)k
⎞

⎠

︸ ︷︷ ︸
a

+Tr

⎛

⎝N
∑

k≥0

t∇ψ,k(N�)k
⎞

⎠

︸ ︷︷ ︸
b

369

=
d∑

i=1

ψ(λi )−
d∑

i=1

ψ(νi )− a + b. (15.55)370
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Now, using the cyclic invariance of the trace and the definition of HN,L , we get:371

a = Tr

⎛

⎝PL DL P−1
L
(P−1

N
)�
⎛

⎝
∑

k≥0

t∇ψ,kDk
N

⎞

⎠P�
N

⎞

⎠372

= Tr

⎛

⎝DLΠ−1
N,L

⎛

⎝
∑

k≥0

t∇ψ,kDk
N

⎞

⎠ΠN,L

⎞

⎠373

=
d∑

i=1

d∑

j=1

λi (π
−1)i j ν̃ jπ j i = λ�HN,L ν̃. (15.56)374

Here, we have made use of πi j , the general term of ΠN,L , and (π−1)i j , the general375

term of Π−1
N,L
= P−1

L
(P�

N
)−1 = P−1

L
(P−1

N
)�. Using the same path, we obtain:376

b = Tr

⎛

⎝PN DN P−1
N
(P−1

N
)�
⎛

⎝
∑

k≥0

t∇ψ,kDk
N

⎞

⎠P�
N

⎞

⎠377

= Tr

⎛

⎝DNΠ−1
N,N

⎛

⎝
∑

k≥0

t∇ψ,kDk
N

⎞

⎠ΠN,N

⎞

⎠ = ν�HN,N ν̃. (15.57)378

Plugging (15.56) and (15.57) in (15.55) yields:379

Dψ(L||N) =
d∑

i=1

ψ(λi )−
d∑

i=1

ψ(νi )+ ν�HN,N ν̃ − λ�HN,L ν̃380

=
d∑

i=1

Dψ(λi ||νi )+ λ�Iν̃ − ν�Iν̃ + ν�HN,N ν̃ − λ�HN,L ν̃381

=
d∑

i=1

Dψ(λi ||νi )+ λ�(I−HN,L)ν̃ + ν�(HN,N − I)ν̃, (15.58)382

as claimed. When N is symmetric, we easily get HN,L = I, and we obtain (15.54).383

If, in addition, N is symmetric, both transition matrices PL and PN are unitary.384

In this case, mi j = l�i n j = (m−1) j i , and so qi j = (l�i n j ) = cos2(l i , n j ) =385

q ji ≥ 0, which yields
∑d

j=1 qi j = ∑d
j=1 cos2(l i , n j ) = 1, and so HN,L is doubly386

stochastic. To finish up, when, in addition, L and N share the same transition matrices,387

we immediately get HN,L = I, and we obtain (15.54). �
388

Hence, Dψ(L||N) can be written in the form of a separable term plus two penalties:389

Dψ(L||N) =∑d
i=1 Dψ(λi ||νi )+ p1+ p2, where p1

.= ν�(HN,N− I)ν̃ is zero when390
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N is symmetric, and p2
.= λ�(I−HN,L)ν̃ is zero when L and N are symmetric and391

share the same transition matrices.392

The definition of Bregman matrix divergences makes quite a large consensus, yet
some variations do exist. For example, [12, 16] use a very particular composition
of two functions, φ ◦ ψ, in which φ is actually the divergence generator and ψ lists
the eigenvalues of the matrix. In this case, (15.52) would be replaced by (writing for
short H instead of HN,L hereafter):

Dψ(L||N) = Tr
(
DψH

)
, (15.59)

where Dψ is the divergence matrix whose general (i, j) term is Dψ(λi ||ν j ). Let us
compare (15.59) to (15.53) when both arguments are symmetric matrices — which
is the case for our finance application —, which can be abbreviated as:

Dψ(L||N) = Tr
(
Dψ

)+ λ�(I−H)ν̃. (15.60)

We see that (15.60) clearly separates the divergence term (Dψ) from an interaction
term, which depends on both the eigenvectors (transition matrices) and eigenvalues:
λ�(I−H)ν̃. If we move back to our generalization of the mean-variance model, we
have L = Θ − aA and N = Θ (Θ and A are symmetric). Adding term aA to Θ

possibly changes the transition matrix compared to Θ , and so produces a non-null
interaction term between stocks. Furthermore, as the allocation A gets different from
the natural market allocation Θ , and as the risk aversion a increases, so tends to do
the magnitude of the interaction term. To study further its magnitude, let us define:

ς
.= ‖I−H‖F . (15.61)

We analyze ς when the risk term aA remains sufficiently small, which amounts to393

assuming reduced risk premia as well. For this objective, recalling that both Θ and394

A are SPD, we denote their eigensystems as follows:395

ΘT = TD, (15.62)396

(Θ − aA)V = VD′, (15.63)397

where the columns of T, (resp. V) are the eigenvectors and the diagonal elements
of diagonal matrix D (resp. D′) are the corresponding eigenvalues. The geometric
multiplicity of eigenvalue dii is denoted g(dii ). We say that the first-order shift setting
holds when the second-order variations in the eigensystem of Θ due to the shift aA
are negligible, that is, when:

aA(V− T) ≈ (V− T)(D′ − D) ≈ (V− T)�(V− T) ≈ Z. (15.64)

Lemma 6. Under the first-order shift setting, the following holds true on the eigen-398

systems (15.62) and (15.63):399
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di ag(D′ − D) = −adi ag(T�AT ) (15.65)400

V − T = T B, (15.66)401

with B a matrix whose general term bi j satisfies:

bi j =
{

0 if(g(dii ) > 1) ∨ (g(d j j ) > 1) ∨ (i = j)
a t�i At j
dii−d j j

otherwise
(15.67)

Here, t i is the eigenvector in column i of T , and dii its eigenvalue.402

Proof sketch: The proof stems from standard linear algebra arguments [24].403

We distinguish two cases:404

Case 1 all eigenvalues have geometric multiplicity g(.) = 1. Denote for short405

V = T+Δ and D′ = D+Λ. We have:406

(Θ − aA)V = VD′407

⇔ ΘΔ− aAT− aAΔ = TΛ+ΔD+ΔΛ408

⇔ ΘΔ− aAT = TΛ+ΔD,409

where we have used the fact that ΘT = TD, aAΔ ≈ Z and ΔΛ ≈ Z. Because of
the assumption of the Lemma, the columns of T induce an orthonormal basis of R

d ,
so that we can search for the coordinates of the columns of Δ in this basis, which
means finding B with:

Δ = TB. (15.68)

Column i in B denotes the coordinates of column i in Δ according to the eigenvectors410

in the columns of T. We get411

ΘTB− aAT = TΛ+ TBD412

⇔ TDB− aAT = TΛ+ TBD413

⇔ T�TDB− aT�AT = T�TΛ+ T�TBD414

⇔ DB− aT�AT = Λ+ BD,415

i.e.:
Λ = DB− BD− aT�AT. (15.69)

We have used the following facts: ΘT = TD and T�T = I (T� = T−1 since Θ is
symmetric). Equation (15.69) proves the Lemma, as looking in the diagonal of the
matrices of (15.69), one gets (because D is diagonal):

di ag(Λ) = −adi ag(T�AT), (15.70)
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which gives us the variation in eigenvalues (15.65), while looking outside the diagonal
in (15.69), one immediately gets matrix B (15.66) as indeed (15.69) becomes in this
case for row i , column j :

0 = dii bi j − d j j bi j − a t�i At j . (15.71)

When dii �= d j j , this leads to (15.67), as claimed.416

Case 2 some eigenvalues have geometric multiplicity greater than one. Assume now417

without loss of generality that g(dkk) = 2, with dkk = dll , for some 1 ≤ k �= l ≤ d.418

(15.71) shows that t�k Atl = t�l Atk = 0, which implies that A projects vectors into419

the space spanned by eigenvectors {t i }i �=k,l , so that {tk, tl} generates the null space420

of A. Picking i = k, l or j = k, l in (15.71) implies ∀i, j �= k, l : bkj = bl j = bik =421

bil = 0. Hence, in columns k or l, B may only have non-zero values in rows k or l.422

But looking at (15.70) shows that λkk = λll = 0, implying d ′kk = dkk = dll = d ′ll .423

It is immediate to check from (15.63) that tk and tl are also eigenvectors of Θ−aA.424

To finish-up, looking at (15.68) brings that if the remaining unknowns in columns k425

or l in B are non-zero, then tk and tl are collinear, which is impossible. �
426

Armed with this Lemma, we can prove the following Theorem, in which we427

use the decomposition A = ∑d
i=1 ai ai a�i , where ai denotes an eigenvalue with428

eigenvector ai .429

Theorem 4. Define e(Θ) > 0 as the minimum difference between distinct eigenval-
ues of Θ , and d� the number of distinct eigenvalues of Θ . Then, under the first-order
shift setting, the following holds on ς (15.61):

ς ≤
(

ad�2Tr (A)3

e(Θ)

)4

. (15.72)

Proof sketch: We denote vi the eigenvector in column i of V in (15.63). The general430

term of V�T in row i , column j is: v�i t j , but it comes from the definition of B431

in (15.68) that vi = t i + ∑k bki tk , which yields v�i t j = b2
j i if i �= j (and 1432

otherwise); so:433

ς =
∥
∥
∥I− (V�T) · (V�T)

∥
∥
∥

F
434

= ‖B · B‖F435

=
∑

π(i, j)

(
a t�i At j

dii − d j j

)4

,436

where π(i, j) is the Boolean predicate (g(dii ) = 1) ∧ (g(d j j ) = 1) ∧ (i �= j).437

We finally get:438
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ς ≤
⎛

⎝
∑

π(i, j)

a

e(Θ)
t�i At j

⎞

⎠

4

439

≤
⎛

⎝
∑

π(i, j)

a

e(Θ)

d∑
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by virtue of Hölder inequality (q, r ≤ ∞), using the fact that T is orthonormal.442

Taking q = r = 2 and simplifying yields the statement of the Theorem.443

Notice that (15.72) depends only on the eigenvalues of Θ and A. It says that as444

the “gap” in the eigenvalues of the market natural allocation increases compared445

to the eigenvalues of the investor’s allocation, the magnitude of the interaction term446

decreases. Thus, the risk premium tends to depend mainly on the discrepancies (mar-447

ket vs investor) between “spectral” allocations for each asset, which is the separable448

term in (15.52).449

15.7 Conclusion450

In this paper, we have first proposed a generalization of Markowitz’ mean-variance451

model, in the case where returns are not supposed anymore to be Gaussian, but452

are rather distributed according to exponential families of distributions with matrix453

arguments. Information geometry suggests that this step should be tried [2]. Indeed,454

because the duality collapses in this case [2], the Gaussian assumption makes that455

the expectation and natural parameter spaces are identical, which, in financial terms,456

represents the identity between the space of returns and the space of allocations.457

This, in general, can work at best only when returns are non-negative (unless short458

sales are allowed). Experiments suggest that the generalized model may be more459

accurate to spot peaks of premia, and alert investors on important market events.460

Our model generalizes one that we recently published, which basically uses plain461

Bregman divergences on vectors, which we used to learn portfolio based on their462

certainty equivalent [20]. The matrix extension of the model reveals interesting and463

non trivial roles for the two parts of the diagonalization of allocations matrices in the464

risk premium: the premium can indeed be split into a separable part which computes a465

premium over the spectral allocation, thus being a plain (vector) Bregman divergence466

part like in our former model ([20]), plus a non separable part which computes an467

interaction between stocks due to the transition matrices. We have also proposed in468

this paper an analysis of the magnitude of this interaction term.469
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Our model relies on Bregman matrix divergences that we have compared with470

others that have been previously defined elsewhere. In the general case, not restricted471

to allocation (SPD) matrices, our definition presents the interest to split the divergence472

between a separable divergence, and terms that can be non-zero when the argument473

matrices are not symmetric, or do not share the same transition matrices.474

We have also defined Bregman matrix divergences that rely on functional compo-475

sition of generators, and obtained a generalization of Bregman matrix divergences476

for q-norms used elsewhere [13]. We have shown that properties of the usual q-norm477

Bregman divergences can be generalized to our so-called Bregman–Schatten diver-478

gences. We have also proposed an on-line learning algorithm to track efficient portfo-479

lios in our matrix mean-divergence model with Bregman–Schatten divergences. The480

algorithm has been devised and analyzed in the setting of symmetric positive def-481

inite matrices for allocations. The algorithm generalizes conventional vector-based482

q-norm algorithms. Theoretical bounds for risk premia exhibit penalties that have483

the same flavor as those already known in the framework of supervised learning [15].484

Like most of the bounds in the supervised learning literature, they are not directly485

applicable: in particular, we have to know ν∗ beforehand for Theorem 2 to be applica-486

ble, or at least a lowerbound ν◦ (hence, we would typically fix ν−1◦  1).487

From a learning standpoint, rather than finding prescient and non adaptive strate-488

gies like in constant rebalanced portfolio selection [10], on-line learning in the mean-489

divergence model rather aims at finding non prescient and adaptive strategies yielding490

efficient portfolios. This, we think, may constitute an original starting point for fur-491

ther works on efficient portfolio selection, with new challenging problems to solve,492

chief among them learning about investor’s risk aversion parameters.493
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